
Published: Aug 16, 2021

Author: Adam Hyde

Illustrations: Henrik van Leeuwen

PDF Design: Harshna Haswani

Rendered from HTML using Paged.js

1 of 23

Single Source Publishing
A investigation of what Single
Source Publishing is and how this
'holy grail' can be achieved.

https://pagedjs.org/


Single Source Publishing 2 of 23

Note: This is a combination of 6 articles published in a series in 2021.

The Problem
Publishing has long suffered from broken workflows that slow down the time

to publish and unnecessarily inflate the cost to publish. Publishing of all kinds
suffers from these inefficiencies. Some of the problems are general, others are
very idiosyncratic and particular to perhaps just one publisher.

However, no matter what kind of publishing you do, there is a good chance you
suffer from a disconnect between content creation processes and production

processes.

In many publishing environments authors, copy editors, proofers etc create and

improve content primarily in one tool (usually Microsoft Word). The content cre‐
ation process feeds into the production process where production staff create a
multitude of other formats – HTML, PDF (for print and screen), possibly XML

and ebook formats etc.

To convert to these file formats, the content has to either be programmatically
converted to various target formats via software (eg Pandoc or bespoke soft‐

ware), or manually converted by people using software (eg InDesign). If manu‐
ally executed Publishers either sling the content ‘over the wall’ to a publishing
services vendor or contractor, or they employ internal staff. The folks doing

these conversions belong to the general category of ‘production people’ – usu‐
ally programmers, designers, or ‘format wranglers’.

Here is the problem. Workflows that look similar to the above, which is most
publishing workflows, separate the content creation from the content produc‐
tion. This disconnect separates ‘the who’ (who does the work), ‘the how’ (what

tools are used), and importantly ‘the what’ – what files are worked on. The peo‐
ple, the tools, and the working files all change as the content jumps from con‐
tent creation to content production.



Single Source Publishing 3 of 23

To understand why this is a problem, we just have to consider this one very sim‐

ple scenario: what if there need to be changes to the content after it has en‐
tered the production stage?

Generally, if content needs to be changed while in the ‘production stage’ it re‐
quires several steps

�. the content people, using their own tools, communicate the changes
required

�. the production people, using their own tools, make the changes for each
output format

�. the content staff check the changes.

All this also requires managing because there is a lot of necessary back and

forth which in turn creates a lot of expensive overhead for making even the
simplest of changes. Additionally, jumping the gap from creation to production
introduces errors.

Take a simple book example – if an error is discovered by the author (which is
common) after the content has gone to the designer, then the author must

write the comments somewhere (email/MS Word/annotated PDF), and send
them to the designer. The designer must then interpret the results, which can
in itself cause errors as designers are seldom content domain experts, and ap‐

ply the corrections in (for example) InDesign. The designer then sends a PDF to
the author to check..and so on…

Or a simple Journal example – the production staff have discovered from proofs
that figures are in the wrong place. This information must be communicated to
(for example) the publishing services provider (via email, MS Word, annotated

PDF etc). The vendor interprets the information, makes the changes in their
(various) tools, and sends back to the publisher to check… and so on…



Single Source Publishing 4 of 23

In each of the above examples, larger publishers also have staff to manage the
communication of changes, track the changes, check the changes etc. It is

quite an ordeal that costs time and money. If publishers don’t do this well, the
consequence is that more errors are introduced.

This is the problem ‘single sourcing’ is meant to solve. Single sourcing is a gen‐
eral approach to publishing workflows that is intended to avoid disconnecting
the content creation and production processes – saving time and money, and

reducing errors.

What is Single Source Publishing?
What exactly is single sourcing and how does it avoid disconnecting content
creation and production?

Single sourcing isn’t a specific solution, it is a general idea that must be inten‐
tionally designed into a publisher’s workflow. Single sourcing changes how

people work and often requires a different tooling. The secret really, if we zoom
out to a high-level abstraction of the problem, is to work out how the content
creation and production folks can work in a shared ‘environment’ where they all

work on the same files, the same source files – hence the term ‘single source’.

In a single source environment if a change needs to be made while the content
is in production the content people can make the change themselves. Less
time and communication required, less to-and-fro, less management overhead,

and fewer errors.

There are many ways of achieving single sourcing. Any book publisher could

solve this by, for example, asking their authors to write their books in InDesign,
saving the files to a shared server somewhere. Authors, copy editors, and



Single Source Publishing 5 of 23

designers (etc) could all collaborate in the same tool, changing the same files,
and all changes could smoothly flow into the final output at the push of a but‐

ton. Success!

There is a good reason why you haven’t heard of anyone doing this despite the

fact that this is a technically elegant single source solution. No author is going
to head off into the woods and spend 6 months in a cabin to conjure up their
masterpiece – in InDesign. Not ever. InDesign is a production tool, it is not de‐

signed for authors.

The above example may seem frivolous, but it gets down to the core of the

problem. Single sourcing, to be effective, must be done with tools that not only
share the same source for content creation and production but also respect the
different tool-cultures of content creators and production people.

Amazingly, this last point is often not taken into consideration. Unfortunately,
too often, the content creators are never asked about the kinds of tools they like

to work with. Their tool-culture is ignored. This is actually a problem with how
tooling is designed and built, and worthy of one or more articles in itself.

A Solution
Let’s look at a simple tool used for single source publishing on the web –
WordPress – which will help us understand some of the more complex prob‐

lems Publishers face.

WordPress is a single source publishing system. To produce a post, the author

does the following:

�. writes the post within WordPress, using the basic web editor supplied

�. presses ‘Update’ and the content is pushed through to the web

That is it. The important thing to understand here is that content is authored in

one place, and at publish time, that content is transformed into the target out‐
put – in this case a blog post shared on the web.



Single Source Publishing 6 of 23

Let’s add a little complexity as it is hard to really understand the value of single
source publishing from such a simple example. We will add more people and

more outputs.

Single Source and Multiple Actors
Before publishing, other actors – copy editors, illustrators etc – might also work
on the content. These folks will also work within WordPress to edit the same

post. All these people can collaborate on the same source for the post. When it
is time to publish, the process is still as simple as pressing publish. There are no
other versions of the content that need to be merged, checked, managed etc.

Single source has, even in this basic example, saved us a lot of hassle.

Furthermore, all the stakeholders here are using familiar tools. The WordPress

editor is a pretty easy editor to use if you are creating content for the web.

Single Source and Multiple Outputs
Now let’s look at adding multiple outputs. What if we wish to display the same
WordPress blog post to look good on both mobile and desktop devices. In this

case, CSS (the set of rules used by designers that describe how webpages
should look) has the ability to identify whether the content is being displayed
on a small or large screen. CSS changes how the content is displayed

accordingly.

As if by magic, we have effectively solved the problem of displaying the same

content for two different types of outputs – desktop and mobile displays.

So whatʼs the problem?
If you were building WordPress for the first time, and you needed to cater for
the above outputs (HTML + CSS for 2 display sizes), what file format would you

choose to store your source?



Single Source Publishing 7 of 23

No prizes for choosing HTML. To transform from HTML to HTML & HTML is
cheap because there is (in simple terms) no transformation needed. This is ex‐

actly what the smart folks at WordPress have done.

The content you are editing in WP is stored as HTML. Exactly that same source
is directly transferred to the web at publish time.

The trouble starts when you require significantly different types of outputs.
What if, for example, you required not just HTML but also EPUB, Screen PDF,
PDF for Print, XML etc. In cases where you require multiple output types, which

is most publishing scenarios, you must choose a source file format that can un‐
dergo significant transformation into all of the output formats you require.

So, how do you choose the right source file format for your publishing system?

When designing a publishing system you face two basic questions, in this
order:

�. what output formats do I need?
�. what source file would best lend itself to transformation into the outputs?

After these two questions there are a lot of secondary questions (requirements)
that will come to bear on the problem, but let’s keep it simple for now.



Single Source Publishing 8 of 23

Unfortunately, the process for designing systems too often takes the following
format, in this order:

�. what source file format is currently in fashion? (hint: it has been XML for
the last 20+ years)

�. how do I build a system around that format?

Unfortunately, this latter thought process has driven the publishing industry

into building expensive and inefficient systems and largely prevented the in‐
dustry from moving towards more elegant workflows.

Is Automation the Answer?
Let's look a little closer at the automation of file format conversion. Obviously it

would be awesome if we could push a button in our imaginary publishing sys‐
tem and all the outputs would roll out automagically – fully formed, perfect and
beautiful.

Is such automation possible? Let’s have a closer look at the types of conversion
involved:

�. Structural Conversion
�. Typesetting

Structural Conversion
There are two types (roughly) of structural conversion – upconversion, and

downconversion.

Downconversion
To create a simpler structure (eg plain text) from any source format, the trans‐
formation mostly means removing information (structure).



Single Source Publishing 9 of 23

Removing structure is easy (usually), we just throw stuff away.

Upconversion
To get from our source file to a more complex structure, we need to add infor‐

mation (structure).

Adding structure is doable but not as easy.

A simple diagram to help us understand up and down conversion would be as
follows:



Single Source Publishing 10 of 23

Down-conversion is generally an easier target for automation. Up-conversion is
more likely to require human intervention.

Typesetting
Another category of conversion is typesetting. Typesetting means we require a
change in the look and feel of the output (design).

There are two approaches to typesetting – ‘automatic typesetting’ (which is
done by a machine) and manual typesetting (done by a human).

Automatic Typesetting
Automatic typesetting is when a designer sets up a bunch of rules (templates)

and then ‘a machine’ applies those rules to the content.

Automatic typesetting is possible to achieve in some Publishing contexts but

the more complex your design requirements, the harder it is to achieve.

Manual Typesetting
When a designer uses a design tool such as InDesign to produce the required
design, this is manual typesetting.

Again, the more sophisticated the design, the more likely it is to require human
intervention to produce the desired result.

Where does that leave us?
If we can achieve all of our conversions – structural conversions and typesetting
– automatically, then we are in a winning situation. We can start with a source
file and then press a button and all of our outputs will be generated automagi‐

cally. This is single source publishing achieved through automation.

Automatic conversion is most likely to be achievable where we have either:

�. very simple conversions
�. moderate expectations from our conversions.

While often true in ‘web publishing’, these two conditions are seldom true for
publishers. Publishers, generally speaking, have high expectations for all their

conversions and their outputs are often complex.



Single Source Publishing 11 of 23

What does this mean? In most publishing contexts, this level of automation is
not achievable – we will require manual processing, and manual processing in‐

evitably leads to the broken workflows we were trying to avoid. If, for example,
we want to introduce a manual design tool such as InDesign, then we are
changing the people, tools, and source as discussed above and we are deciding

against a single source workflow.

If we are to achieve single source publishing, but we can’t do it by automation

alone, then we need another strategy.

To achieve all the efficiencies of the single source workflow that we have dis‐

cussed before, we need to work out how humans (content producers, design‐
ers, production people) and machines can utilize different tools, respecting
their tool-cultures, while working on the same source to create all the desired

outputs. How is this possible?

For the Good of The System
“[XML].. is seen as something that must be endured by content
authors for the greater good of the enterprise.”
Peter Meyer, 2005

It seems (from above) that our dream of perfect automated output is dead, so
how do we ensure all the folks involved in preparing content to publish – au‐
thors, editors, copy editors, designers, format wranglers etc – can work on the

same source?

Let’s look, at a somewhat simplified level, at the operations each of the main

categories of stakeholders have to perform.

Content – ability to change the content

Design – ability to change the look and feel of outputs

Format – ability to change the structure of outputs

The challenge for systems designers is to consider tooling that can help each

group of stakeholders work efficiently while they share the same canonical
source.

https://web.archive.org/web/20060826041249/http://www.elkera.com/cms/articles/seminars_and_presentations/planning_a_single_source_publishing_application_for_business_documents/


Single Source Publishing 12 of 23

To solve this problem, the publishing sector’s ‘system thinking’ has largely
been, to date, driven by what experts believe is the best file format. This ‘file-for‐

mat-first thinking’ has looked like this:

This thinking has lead us to where we are today, and today we have broken, dis‐
jointed workflows.

To bring about the efficiencies we are after, we need to think in this direction:

What if the file format was the last decision you made when constructing eco‐

systems of publishing tools, rather than the first thing you decided?

Are we more interested in making decisions based on how we can help people

work more efficiently, or making decisions based on source file formats? When
designing systems the publishing sector has, for the past 25 years, appeared to
have answered “source file formats” to this question. This is largely why the sec‐

tor has been driven away from single source publishing systems and is mired in
the kind of broken, slow, expensive processes we discussed in earlier and we il‐
lustrated as follows:



Single Source Publishing 13 of 23

When we started our discussion of single source publishing systems in this arti‐

cle, we talked a lot about source file formats. However, it appears that deciding
on the actual source file format to be used is (literally) the last question we
must ask. The questions we need to ask are as follows, in this order:

�. what tools can people efficiently use?
�. what group of these tools share the same file format?

�. what is the file format?

We need to start looking at ecosystems of tools that people can use efficiently
to work together on the same source, and then adopt that source format, what‐

ever it may be….. this might be a lengthy exercise as there are a lot of tools and
formats out there, so I’ll make it easy on you.

Workflow-First Systems
In the above section, we concluded that it is a very good idea to build systems

around ecologies of tools that share the same source file format, rather than
deciding on the source file format before workflow needs are considered.
Rather than a ‘file-format-first’ approach, we should move towards a ‘workflow-

first’ approach.

So we need to first consider, at a somewhat simplified level, the operations each

of the main categories of stakeholders in a single source publishing system
have to perform:

Content – ability to change the content

Design – ability to change the look and feel of outputs



Single Source Publishing 14 of 23

Format – ability to change the structure of outputs.

Setting aside the search for tools for a minute, it might be reasonable to ask – is
this approach even possible? Don’t each of these operations require something
quite different from a file format? So don’t we require different formats to ser‐

vice each phase? It seems, in the history of publishing so far, systems designers
have appeared to believe this to be true. This is why many publishing systems
upconvert to the ‘highest resolution’ format possible (generally some form of

xml) as early as possible, and then downconvert to specific formats for con‐
sumption by tools such as InDesign.

But it is possible for a single format to contain enough information to feed into
each of these operations. Let’s look again at each category of operations:

Content
First, the content folks must be able to edit a relatively easy-to-understand doc‐
ument. Authors, etc, in most cases prefer a document which contains only
what is known as ‘display semantics’ as they don’t generally work with tools

that enforce structure, rather they write from top to bottom with a structure
that is meaningful to them via the headings, indents etc displayed in the actual
document.

Authors of this kind, which is most authors, ‘just like to write’. They don’t care
too much for having to maintain anything beyond the text, other than how the
document looks to the eye.

So any format we choose must be able to support a suite of tools that these
kinds of authors can use. Generally speaking these tools are known as ‘word

processors’.



Single Source Publishing 15 of 23

Design
Designers must be able to take the same content and apply design to the con‐
tent within the constraints of the output format. For example, designers must
make the document look good in paginated PDF for printing (eg books), or

EPUB, or the web etc.

Any suite of tools we choose must enable designers to change placement, color

etc of all the elements in the content as well as controlling the same for format-
specific features (eg running headers, page numbers etc) for each output type
while using the same source file. Generally, to date, the typical tools for design‐

ers have been what is sometimes referred to as ‘pixel pushing’ tools – tools
where you can point and click to target elements and change their look and
feel. However, in recent years (well, for a while now) there have been ‘rules

based’ design tools. One such rule-based approach is CSS – the set of rules web
designers use to determine the display format of webpages.

Format
Format wranglers want to be able to output file formats required for archiving,

transmission, and storage. JATS (Journal Article Tagging Suite) is one such for‐
mat, it is a variant of XML. Books have BITS (Book Interchange Tag Suite) which
is also a XML variant.

Format wranglers need the source file to contain enough information so the
content can be translated (restructured) to the new form. Format wranglers are

a kind of technician—someone that is expert in encapsulating data in logical
structures. The tools for these folks have generally been specialist pseudo-
scripting tools such as XSL (Extensible Stylesheet Language) which is part of

the family of XML tools. However, there are other approaches – JSON, for exam‐
ple, is often used as a way to represent data, especially for transferring or stor‐
ing data for web applications. With JSON, transformation is managed by rules

encased in custom JavaScript code. But in essence, good format wranglers like
to write rules that can transform many files, they don’t like manually transform‐
ing each file.

For a format to meet the needs of each of these use cases, there are two factors
that must come into play:

�. any alterations to the content by content, design, or format people, MUST
affect only one source – the single source

�. the source file format must contain enough information to service each
of the tools used by these folks



Single Source Publishing 16 of 23

That seems to make sense… but there is one additional issue that is very impor‐
tant and which may not be so obvious. Any of the tools used can of course aug‐

ment the source file with information for the job at hand while not requiring
that information to actually be part of the source file.

A good example is with transformation. The transformation folks can write a set
of rules that can map the source file onto another structure (such as JATS). To
do this they need two things:

�. enough information in the source file to enable the transformation. For
example, to map A->B the source file must first tell us what A is .

�. a set of rules that manage the execution of the transformation

The interesting thing is that the rules ([2] above) for the transformation do not

have to be contained within our source file. These rules can exist entirely inde‐
pendently of the source file.

In this way the format wranglers can do a lot of things no one else cares about,
without overloading the source file with all kinds of requirements. This helps us
keep the amount of information the actual source file needs to contain to a

minimum.

This is, if you had not realized this already, exactly the opposite to the way pub‐

lishing systems designers have approached this process to date.

So, let’s say this makes sense so far. But what of content creation and design?

For editing/content creation we need a format that doesn’t break if it is ‘badly
structured’. You may not know it, but if there is one thing authors are very good

at, it is badly structuring documents. So, we need a format that doesn’t care if
the author structures things oddly. We can clean that aspect up later.

This brings about an interesting quality of the file format. It must be capable of
being progressively structured. That is, we can start with a ‘badly structured’
document and the source file format won’t break. We can then improve the
structure over time and the file format will also be happy to do this.

This is also, not the way it has been managed to date in publishing systems.

Now to design. Design requirements are very similar to the requirements for
format wrangling. We need the source file format to hold just enough informa‐
tion so that we can design elements with our design tools, but any further logic

can be contained within separate rules and not contained within the source
file. Once again, that allows us to keep the requirements of the source file to a
minimum.



Single Source Publishing 17 of 23

Ecosystem Features
So, we have two sets of qualities when choosing our ecosystem — one set of
features for the source file format, and one for the types of tools we choose. For
the file format we need this:

�. contains just enough information for each of the operations (create,
transform, design)

�. can be progressively structured.

For the tools we need this feature:

�. the design and transformation are managed by logic external to the
source file format.

Where does that leave us? As it happens, it leaves us with the ecology of tools
that surround one of the most popular formats of our age – HTML.

Concurrency
In publishing there are two types of concurrency we care about:

�. workflow concurrency – the ability to perform multiple tasks upon the

work, by different people, at the same time
�. realtime editing – the ability for multiple people to edit a document at

the same time and see each other’s changes in realtime (like Google

Docs, or Plasmic / Figma etc)

These two overlap but they are distinct. Here is a brief example to illustrate the

difference. In a book production workflow, we may break the work (book) up
into multiple documents – one for each chapter or even per paragraph (some‐
times referred to as batching). Just by doing this we can have more than one

https://www.plasmic.app/
https://www.figma.com/


Single Source Publishing 18 of 23

person working on the book at the same time (each tackling a different chap‐
ter for example).

This is workflow concurrency.

Now, if we want two people to edit the same chapter at the same time this is

realtime editing.

Of course we can blend these two models:



Single Source Publishing 19 of 23

Now, realtime editing, as a type of concurrency, is a choice you have depending
on the type of technology you choose for editing (there are also concurrent de‐

sign apps like Plasmic and Figma). If you choose to use Microsoft Word for con‐
tent creation, for example, you cannot achieve realtime editing. If you choose
other tools (eg Google Docs, or ProseMirror and Firebase / ProseMirror and yjs)

then you can achieve simultaneous realtime editing.

But it is good to remember that if the technology does offer realtime editing

then there is nothing forcing you to use it. Whether you use it or not is depen‐
dent on how you want people to work. Previously in this series of articles about
single source publishing workflows, I suggested we do not design publishing

platforms starting from technical features (such as choosing the source file for‐
mat first), but rather we take a workflow-first approach. It is the same with real‐
time editing – first work out your ideal workflow, and if indeed you actually

want realtime editing, then add that to your list of system requirements. The
technical consequences are a secondary problem.

As for workflow concurrency – we have the same set of questions. Do we want
multiple people to perform different types of tasks on the work at the same
time? Do we want, for example, the designer to be working on the layout as the

copy editor does their work? Or an illustrator to be designing illustrations while
an author is commenting on the illustration at the same time? These workflow
concurrency questions must be answered when choosing or designing a pub‐

lishing system, and once again it comes down to your answer to the crucial
question – “what is my ideal workflow”. Other decisions follow from there.

Given all this, it is a good idea to first zoom out and question what value con‐
currency, of any kind, can offer a publishing workflow. We can then answer
whether we actually want concurrency.

Concurrency vs Sequential Workflows
Publishing workflows these days are mostly sequential. A sequential workflow
requires operations to be executed one after the other. Many publishers today,
for example, are emailing (or uploading and downloading) bunches of docu‐

ments for each other, usually in the MS Word format, to work on. An author
emails files to a acquisition manager, who emails them to the production crew,
who back and forth with authors and copy editors etc to get all the files pro‐

cessed (or “done_done_final_done_really-final-done_v2” as the case may be)
and then the same files are sent to a designer/vendor etc

This is very sequential and we know its downside because that is how things
work today. We know how much time and money these workflows cost (much
more than necessary).

https://www.plasmic.app/
https://www.figma.com/
https://github.com/xylk/prosemirror-firebase
https://demos.yjs.dev/prosemirror/prosemirror.html


Single Source Publishing 20 of 23

The question is whether concurrency is better? To answer this question we
have to understand the essential characteristics of concurrency, and how they

can help publishers.

There are two essential characteristics of concurrency:

�. the opportunity to see the current state of the work at any moment
�. the opportunity to act on the current work at any moment.

There is a lot to gain from these two simple features. From a very high level
there are 4 general gains on offer that are derived from [1] and [2] above:

1. understanding state – an immediate understanding of the state of the work
at any moment

2. reducing handling time – reducing the to and fro of passing documents back
and forth

3. parallel processes – various team members can do what they need to do in

parallel with each other



Single Source Publishing 21 of 23

4. realtime problem solving – issues can be resolved in realtime.

These 4 opportunities provided by concurrency can have, even if moderately
implemented, a huge impact as Ken Brooks has attested:

“By implementing collaborative editing, WYSIWYG rendering,
and push-button distribution to all formats (courses, eBooks

and print files) we discovered it can result in a 50% reduction in
cost and a 50% reduction in cycle.”
—Ken Brooks, president, Treadwell Media Group.

But concurrency also allows for completely new ways of working, as Barbara
Rühling from Book Sprints points out:

“Book Sprints would not be able to produce books in 5 days if
authors, illustrators, copy editors, designers etc were not all able
to work concurrently. ”

— Barbara Rühling, CEO, Book Sprints

How much concurrency benefits your workflow depends on which parts of the

cycle you decide to make concurrent, and just how far you are prepared to go.
How far you take it is up to you.

Here are some examples of where concurrency could benefit a common pub‐
lishing workflow:

Art logs and image research starting as soon as FPO (‘for placement
only’) images are placed
Alt text being created as images are being added

https://www.linkedin.com/in/kmbrooks
https://booksprints.net/


Single Source Publishing 22 of 23

Indexing could start as the text is completed (inserting tags) before the
proof stage

Proofing being finished on one part of the book before the rest is finished
Concurrent page rendering enables author to correct or fit content as
they write it

Testing the content with live customers as the rest of the content is being
finished (O’Reilly does this, and it’s a way to do A/B testing for learning
objects and assessment items in education. It’s a way to improve prod‐

uct-market fit).
Multiple authors working on the same text at the same time
Designers working on design of the actual content as a work is being

created
Copy editors working on content immediately as it is completed by an
author

Illustrators placing images in a work as it is being authored
Production editors understanding exactly what has and hasn’t been
done at any time

Developmental editors and authors working on the same text at the
same time

SSP and Concurrency

So, what about SSP and concurrency?

Remember these two features of concurrency listed above:

�. the opportunity to see the current state of the work at any moment
�. the opportunity to act on the current work at any moment.

These two features require the source to be shared between all those in the
team. To have concurrency, on a system or document level, we need to share
the source … sound familiar? Sharing the source is the same core design re‐

quirement of a single source publishing system. SSP offers more opportunity
by design for concurrency than does a ‘multiple master’ publishing system.

SSP can offer publishing enormous gains through the introduction of concur‐
rency into the workflow. Concurrency can help optimise how you work, or it can
radically change how you work. How much you take advantage of SSP and con‐

currency is completely up to you. The advantage of SSP is that you have a
choice, as Andrew Savikas points out:



Single Source Publishing 23 of 23

“Concurrency is so powerful. It means it’s possible to (for exam‐
ple) have an author, copy editor, indexer, and designer all mak‐

ing changes in different parts of the manuscript at the same
time. Of course, it does not always (or even often) make sense
for each step of the workflow to be done concurrently, but an

SSP model at least makes it possible. “
— Andrew Savikas,  Chief Strategy Officer at getAbstract

(c) Adam Hyde, 2021. This work is licensed under a Creative Commons
Attribution 4.0 International License.

Thanks to Wendell Piez, Ken Brooks, Andrew Savikas and John Maxwell for
feedback. Thanks also to Henrik van Leeuwen for the images and Raewyn
Whyte for copy editing.

https://www.getabstract.com/
http://creativecommons.org/licenses/by/4.0/

