
Published: Sep 13, 2021

Author: Adam Hyde

Illustrations: Henrik van Leeuwen

PDF Design: Harshna Haswani

Rendered from HTML using Paged.js

1 of 11

Single Source Publishing
Case Study: Ketida (Books)
An invesitgation of how Ketida
achieves Single Source Publishing
for books.

https://pagedjs.org/


Single Source Publishing Case Study: Ketida (Books) 2 of 11

Abstract
This article is a case study of a Single Source Publishing platform for books
—Ketida (built by Coko). The content is brief and by no means a complete
overview of Ketidafeatures. Some demos have been prepared—when the
demo icon appears in the text please click on the iconto see the pre-
recorded demos.

https://coko.foundation/images/uploads/editoriaDemo.webm

Ketida is a web-based print and ebook book production platform that enables
concurrent workflows and ‘push button publishing’ via Single Source
Publishing (SSP) architecture.

There are three core design principles:

https://coko.foundation/single-source-publishing/
https://coko.foundation/product-suite/
https://coko.foundation/
https://coko.foundation/images/uploads/editoriaDemo.webm


Single Source Publishing Case Study: Ketida (Books) 3 of 11

content components—the book is treated as a collection of distinct con‐
tent components (chapters, copyright pages, back matter materials etc—

we will refer to these all as components for the rest of this article.

single source—all team members (authors, copy editors, illustrators, de‐
signers etc) share the same document source file.

rule-based design—design rules (for EPUB, PDF etc) are applied to, but
are independent of, the shared source file format.



Single Source Publishing Case Study: Ketida (Books) 4 of 11

The following explores how these three design principles manifest in the three

main Ketida user interfaces within a SSP architecture, and discusses the oppor‐
tunities this presents for workflow optimization.

User Interfaces
There are three main interfaces that are shared by all team members:

The Book Builder—used for building and managing the structure of the
book, understanding the status of the book, and accessing all content

The word processor—used for creating and improving content in the
book
Design interfaces—used for designing the book

The Book Builder
The Book Builder is the interface the team collaboratively uses to manage the
top level book structure, understand state, and access all content.



Single Source Publishing Case Study: Ketida (Books) 5 of 11

From the Book Builder, each team member can:

manage the book structure
understand the current structure of the book at a glance
understand the current state of any chapter/component in an instant

understand immediately the tasks they have to perform (via the state
markers)
immediately access the chapter or component they need to work on

Ketida breaks a book into individual components and displays these on the
Book Builder grouped into front matter, body, and back matter divisions.

Components can be reordered by drag and drop. Updates to the book structure

are updated in real time so all team members see changes immediately.

 https://coko.foundation/images/uploads/toc.gif

Component-level workflow states (eg ‘for review’, ‘proofing’ etc) are also man‐
aged from the Book Builder. Each component is marked with its own state, in‐

dependently of the other components. Users with the correct permissions can
change a component state (move it from one status to another). A component
state change is also updated in real time for all users.

 https://coko.foundation/images/uploads/concurentstates.gif

Since all components have their own individual state, workflow can be opti‐
mized by enabling each user to advance through the production process at
their own pace, allowing for many different types of tasks to occur in parallel

across the entire book.

https://coko.foundation/images/uploads/toc.gif
https://coko.foundation/images/uploads/concurentstates.gif


Single Source Publishing Case Study: Ketida (Books) 6 of 11

Components states are tied to configurable roles and permissions. These role
permissions give very granular control per state, per chapter. It is possible, for

example, to allow an author to edit a chapter at a particular stage of the work‐
flow (e.g. ‘author revision’) while at the same time preventing the author from
turning track changes off. It is also possible to enable commenting-only for spe‐

cific roles when a chapter is in a specific stage etc.

Workflow states and permissions give the publisher full control over how linear

or concurrent they wish their workflow to be.

From the Book Builder, a user can click ‘edit’ and Ketida’s word processor will
open that component for content creation or editing.

On opening a component to edit, the component becomes locked. If a compo‐
nent is locked, other team members can still view the content in read-only

mode. We have found many publishers prefer component-level locks to simul‐
taneous realtime editing of (for example) chapters.

Content Creation and Editing
Content is created/edited via a web-based word processor (a purpose built soft‐

ware module named ‘Wax’ after the Greek wax tablets).



Single Source Publishing Case Study: Ketida (Books) 7 of 11

Wax is itself very configurable and extensible via plugins. By default, Wax sup‐
ports all the general text functions you would expect from a word processor, in‐

cluding track changes, math, tables, special character support, threaded com‐
ments, images, footnotes, etc. Wax can also integrate with third-party services
easily (such as automated processes for structuring text, or Grammarly for

proofing etc). Wax supports simultaneous realtime editing but it is not imple‐
mented in Ketida at present (see above).

 https://coko.foundation/images/uploads/Peek-2021-09-14-09-56.gif

All images for a component are managed by Ketida’s Asset Manager which can

be accessed either from Wax (within a component) or from the Book Builder.
The Asset Manager allows for assets (mostly images) to have their own work‐
flow independent of other content. This allows the artwork team (if there is one)

to work in parallel to other team members (copy editors, authors etc).

When editing or creating text, all document semantics (headings etc) must be
applied using ‘named styles’ which means the underlying document structure

is as it appears to the eye (WYSIWYM—’what you see is what you mean’). All
styles are pre-determined and set by the publisher. It is not possible with Wax
to make a paragraph look like a heading (via applying arbitrary fonts and size

choices within Wax) without actually using the appropriate publisher-pre-de‐
fined heading style.

When working in a single source platform such as Ketida, ensuring the underly‐
ing syntax of the document matches how it appears is very important.
Designers, for example, cannot apply their design if they do not have known

and reliable document semantics. Given that authors, copy editors, proofers,
designers etc all share the same source, the underlying ‘display semantics’
must correlate to explicit, known markup throughout the entire production

process.

https://coko.foundation/images/uploads/Peek-2021-09-14-09-56.gif


Single Source Publishing Case Study: Ketida (Books) 8 of 11

The document format is obviously an important design decision when choos‐
ing or building a word processor that supports the above features in a Single

Source Publishing system. Ketida’s underlying document storage format is
HTML.

HTML has many advantages as a storage format in this context but first and

foremost are:

HTML has a near universal set of established common document seman‐

tics AND can carry bespoke semantics of any publisher easily
HTML can carry a lot of additional structural information via class
information

HTML can be progressively structured without breaking.

In addition to the above advantages for word processing, HTML also offers book
designers opportunities in a Single Source Publishing system.

Design Interfaces
In Ketida, design for EPUB and print-ready PDF is managed via editable rules
that are stored together with various other design assets (eg fonts, JavaScript
snippets) as templates.



Single Source Publishing Case Study: Ketida (Books) 9 of 11

The design system combines the semantically-controlled HTML content source
(produced by the word processor Wax) with the predefined design rules (tem‐

plates) to produce EPUB and PDF.

It is the role of the designer to create CSS that targets the (known) output se‐
mantics from Wax, together with any format-specific controls (eg running

heads, widows and orphans, etc), and produce beautiful looking print and
ebooks. Designers do this by adding bespoke classes via Wax if necessary, as
well as editing the design templates live.

Designers can add custom classes (inline and block) to the source via the Wax
editor for design purposes. All custom class names are carried through unal‐

tered in the HTML to allow ease of targeting via CSS. The CSS design rules for
print or ebook can be edited at anytime to improve the design.

PDF output is handled by PagedJS (although it is also possible to export to
InDesign formats). PagedJS is a typesetting system that follows the W3C
PagedMedia pagination control standards to convert CSS and HTML into PDF.



Single Source Publishing Case Study: Ketida (Books) 10 of 11

Effectively, PagedJS extends CSS to include additional controls for designing all
elements of a print book.

PagedJS CSS can be edited live in the paged.js design interface.

Screenshot of PagedJS Design interface

Rendering of outputs (PDF/EPUB) can occur at any time in the workflow and
can be done by anyone, permissions pending. This means team members can

see early galleys at the push of a button. It also means that a designer can con‐
tinue designing a book and render EPUB and print-ready PDF (with the actual
content in place) while the book is still being written.

 https://coko.foundation/images/uploads/Peek-2021-09-14-10-08.gif

Single Source Publishing and Ketida
Ketida is a complete single source publishing solution. The platform is built for

small and large enterprises with a scalable modular microservices architecture.
Almost every part of the system is replaceable, extensible and customisable—
allowing for an enormous scope of workflows.

Concurrency is built into the core of the Ketida architecture. Publishers can
benefit greatly from leveraging Ketida’s concurrent SSP framework by optimis‐

ing their workflow in innumerable ways. Some examples include (taken from
the earlier article on SSP):

Art logs and image research starting as soon as FPO (‘for placement
only’) images are placed
Alt text being created as images are being added

https://coko.foundation/images/uploads/Peek-2021-09-14-10-08.gif


Single Source Publishing Case Study: Ketida (Books) 11 of 11

Indexing could start as the text is completed (inserting tags) before the
proof stage

Proofing being finished on one part of the book before the rest is finished
Concurrent page rendering enables author to correct or fit content as
they write it

Testing the content with live customers as the rest of the content is being
finished (O’Reilly does this, and it’s a way to do A/B testing for learning
objects and assessment items in education. It’s a way to improve prod‐

uct-market fit).
Multiple authors working on the same text at the same time
Designers working on design of the actual content as a work is being

created
Copy editors working on content immediately it is completed by an
author

Illustrators placing images in a work as it is being authored
Production editors understanding exactly what has and hasn’t been
done at any time

Developmental editors and authors working on the same text at the
same time

Note: this article is only a partial list of Ketida features, focusing only on on

some core system design decisions that lead to, or are a consequence of,
Single Source Publishing principles.

Thanks to Henrik van Leeuwen for illustrations and Raewyn Whyte for copy
editing.


