SignalPath Workflow
Design

Design thought piece.

PDF Design: Harshna Haswani

Rendered from HTML using Paged.js

https://pagedjs.org/

| wrote a blog post about an emerging method to design workflows, tentatively
titled ‘1+1". I'm refining this a little and also have spoken to a few people about it,
in particular, | stole a few minutes of Anthony Mann's time (founder of Make us
Proud, and YLD) in London over drinks to explore the idea. Interestingly,
Anthony immediately saw parallels to signal processing apps which was quite
an interesting insight — even more interesting to me as Signal Processing is
something | happen to have had a lot of experience in from my artist days. This
insight inspired me to think through that connection a little more... so, inspired
by the chat with Anthony, the following takes ‘1+1' a bit further, maybe I'll itera-
tively call it ‘SignalPath Workflow Design'...

Signals

If you have never worked with applications such as PureData or (its closed
counterpart) MaxMSP, then you may not know what Signal Processing is...
these two applications belong to a category of software that is a kind of graphi-
cal programming, but very much targeted at (but not limited to) the audio-vis-
ual world. Taking PureData as an example, you essentially put objectson a
page and draw connectors between these objects.

X - + Untitled-1* - /home/adam

File Edit Put Find Media Window Help |

print

The connectors follow an inlet-outlet model which controls the flow of a signal
from one object to the next. In the above diagram, the signal travels from the
top object to the bottom object. With time, and a little expertise, you can de-
sign very complicated signal paths. The following is a video mixer built with
PureData by Luka Princic.

20of6

https://www.adamhyde.net/11-design-method-for-workflow/
http://www.makeusproud.com/
https://www.yld.io/

Eemhend 2 Eem}"eud 3| vou need gemhead to start the gem chain

Ej g opens the dialog to select one video

©openpanel §PE"p”"E1 infeBminitronics. net
o open $1

open 51 =

/ ;’I <--this toggle enables the "locp™ mode
) r
{ £

[laute §1 J jauto 31 -
| = P . .. creagte creates the gem window
Esi.x_Fier ’EL:(_:'IFL].F; loods the wvideo 2
'ﬁE == ..) Dtur‘r‘s rendering on !
\ o - =
| | estroy
éi.x_mi.x @ mixes between inlet 1 and 2 =
—] i reset
£i:¢_textur‘e texturizes the result into... —
= éemir'

;Ectﬂr‘?l_t' 4 3|‘=

If you want to know more about PureData,try this book that was created, in
part, in the first non-Book Sprint | didn't facilitate. There are also some kooky
videos around showing Pure Data (PD) in action where the interface is the
video - they are pretty cool, like this one or this! And of course, there is always
graphical programming that takes the graphicalliterally.

So, how does this relate to workflows? Well, Anthony pointed out that situating
a common Dashboard as the place all stakeholders go, to see what they have to
do, and which links out to the place where they have to do it — is a basic signal
processing model. A signal is fired off on the Dashboard, which the user of the
software sees (the signal) and then they click on the link through to the space
where they need to do it (essentially following a signal path). Ultimately, creat-
ing ‘signal paths’ should be easy to do in a workflow system as it is PureData,
but we aren’t there yet. However, it is useful to take this Signal Processing
metaphor into our design process as it gets across the basic idea... workflow is a
series of signals, and signal paths. It is no more than that. Once we understand
that, we can start designing the signals and the signal paths and, perhaps
more importantly, even if it does take a little bit of coding, designing like this
also has inherently embedded in it the idea that to change a workflow is merely
rearranging (additively or by subtraction), the order of signals. If we can execute
on this we can easily optimise workflows ‘as we go’ and avoid hardcoded pre-

scriptive systems which have become the malignant virus in publishing today.

Also, just as an aside, the common dashboard, as useful as it is here for talking
about objects (which snuggly fits in with the PureData metaphor), the dash-
board is not critical. It is the orginating signal that is critical, it doesn't matter
where it emanates from. It could be from a dashboard, but equally, it could
come from email, an app, chat notification..whatever. | am indebted to Anthony

for making this salient point.

3of6

http://write.flossmanuals.net/pure-data/introduction2/
https://www.adamhyde.net/the-first-not-really-book-sprint/
https://www.youtube.com/watch?v=0qA8IL2fO00
https://www.youtube.com/watch?v=I9_3CfRm8GE
https://www.youtube.com/watch?v=yp3PnQMM3rA
https://www.youtube.com/watch?v=IBnxFNV06N4

Spaces

In the world of Signal Processing software, the signal travels from one object to
another by following a signal path. In the world of platforms that encapsulate
workflows, the signal carries the user from one space to the other. Let’s just say,
for simplicity’s sake, the originating space is the dashboard. So, a signal (these
are notifications in the software world so | will use these interchangeably) is wit-
nessed by the user, who then clicks through to the space where they have to do
what they have to do.

Let's look at a concrete example from the word of journals — a Managing Editor
needs to sanity check all new submissions. They see a new submission appear
on their dashboard. Next to it is a link, and they click through to the submission
and read through it. That is a simple signal path, in this case, a notification path
directing a user from one space (dash) to the other (submission page).

So this is pretty simple: the interesting thing to note is that we could go
through every step in a workflow and map out this signal path. Who needs to
do what is what defines a ‘step’ in a workflow. If we listed this out for any work-
flow, it would look something like this, formatted as who does what for each
step:

1. author fills out submission data

2. managing editor checks submission data

3. managing editor assigns handling editor ..etc So, we could map this out
one step after the other and draw a simple signal path for each step, until
the whole workflow is accounted for. The problem here, is that if we were
to design a system like this, we would have a whole lot of unique objects
(spaces) with each step showing a signal originating on a dashboard and
then ‘carrying the user’ to a unique space. That's not very helpful as you
would soon end up with hundreds of one-action unique spaces.

Instead, what we must do is follow the ‘1+1" model | wrote about earlier. The ba-
sic principle is to reuse spaces as much as possible, and only add new ones
when we absolutely can be sure the existing spaces can't be reused.

In action... if you consider the above three steps in a workflow, you will note that
the first 2 steps involve doing something with submission data. So, let's just re-
use that same space. That way we have covered two-thirds of the above 3 steps
with just 1 new space (apart from the dash).

If we can do this through the entire workflow, we will, if disciplined, end up with
a very simple diagram of spaces. For example, for Collabra Psychology Journal

we have the following:

4of 6

Review

/ Submission
Manlage Dashboard
Review \
Manuscript
Decision
Control

That's it... it will pretty much cover the workflow of most journals. The thing to
understand when capturing the workflow in the above is not only the spaces,
but the order of signals. If you want to see how this applies to Collabra, have a
look at the slides | put together outlining this. You can also check out the same
method applied to the Wormbase micropublications platform.

The Dash, Single Actions, and Flexibility

As mentioned above, the dashboard is a handy mechanism to originate the
signal/notification to someone that something has to be done, and then ‘carry
them'’ there via a link etc

However... when designing systems like this, it is also important to recognize
the difference between a single action that could be easily executed from the
dashboard (ie. without ‘going anywhere’) and an action that requires an addi-
tional space from which it can be executed. This line is fuzzy since single ac-
tions could be placed anywhere. For example, let's take steps 2 and 3 in the
workflow described above. The Managing Editor can view the submission and
then the only thing they need to do is assign a Handling Editor (not quite true,
they have a choice of simple actions, but let’s just go with this for now). If we
know the preset list of Handling Editors (Journals always do) then we can sim-
ply choose one from a dropdown list. Done. | would argue that this action is
best placed on the Dashboard. That does mean that the user (Managed Editor
in this case) has to follow the ‘signal path’ from Dash to Submission, read the
submission data, and then ‘travel back’ to the Dash to execute this assignment.
That isn't a terrible burden on the Managing Editor, but | can see why someone
would argue that this action should instead be placed on the Submission page
to simplify things and avoid this ‘additional travel'.

50f6

http://slides.com/eset/deck-8-13#/
http://slides.com/eset/deck-8-14#/

| can see that argument but if we do this we create very conditional interfaces
that are fixed to one prescribed order of signals and is hard to change later. To
avoid this | believe we should try and avoid as much conditional logic as possi-
ble in spaces other than the dashboard. If we embed the conditional logic only
in the dash, then we have only one place to change when we decide at a later

date to further optimise the workflow.

The knock on effect of this is that each space really is an operational context
where actions of a certain kind take place... for example, in the Collabra spaces
diagram above, we have a ‘Manage Reviewer’ space. All those that see this
space, to avoid embedded conditional logic, should see the same thing.
Whoever sees this space, sees all the tools necessary to manage a review for a
specific paper. The trick is then only to enable or disable access to these spaces
according to a set of pre-determined attributes or criteria. If we can do that,
then optimising a workflow really is a matter of re-ordering signals, and very lit-
tle other system tweaking needs to be applied.

How to use Signal Path Flow Design

The process is actually quite simple:

1. right down a who does what order of signals, optimise as you go

2. start with a dashboard (its a handy starting point) and go through the
workflow step by step

3. at each step ask yourself, is this a single action best handled on the
dashboard? or do | need another space?

4. if you need another space, see if you can use an existing one. If you can,
use that.

5. If you can’t use an existing space create a new one

There is a bit of wrangling needed, but so far | have found this a pretty effective
way of capturing seemingly complex workflows in relatively simple systems,
systems that can also be ‘easily’ optimised over time.

60f6

