
Published: May 5, 2022

Author(s): Adam Hyde , Ben Whitmore
(Coko) , Dan Visel (Coko)

Illustrations: Henrik van Leeuwen

PDF Design: Harshna Haswani

Rendered from HTML using Paged.js

1 of 22

Kotahi: a new approach to
JATS production
A new innovation from Coko -
push button JATS production.

https://pagedjs.org/

Kotahi: a new approach to JATS production 2 of 22

An introduction to Kotahi
Kotahi is a free, open-source system for scholarly publishing, designed to sup‐

port a wide variety of publishing use cases including journals, micropubs, pre‐
prints, PRC (Publish, Review, Curate), weblabs, and more. Kotahi supports multi‐
ple workflows for each of these use cases, with a key feature being the single-

source publication to multiple formats. Once a document is in Kotahi, it can be
exported to JATS (Journal Article Tag Suite), PDF, or HTML with the Kotahi
source as the single source of truth.

Not all workflows require every one of these output formats – it’s possible to use
Kotahi for evaluating preprints residing on external servers, for example, with

no need to regenerate their PDFs – but an increasing number of publishing
projects aim to generate multiple formats, and Kotahi is designed to make it
easy for teams with minimal format-specific knowledge to publish to any of

those formats. Kotahi also versions documents; if a new version of a document
is created, re-exporting in all formats is simple.

Kotahi is in active development, with a growing number of users. It is available
for installation from the Coko Gitlab).

Features
Kotahi’s main features include:

Multiple workflows and use cases: Kotahi supports multiple workflows for
PRC (Publish, Review, Curate) and the submission, peer review, and

publishing of everything from preprints, micropubs, journals, and books
to exciting new types of publishing.
Multiple review models: Kotahi enables publishers to use a number of

different review models: open, blind, or double blind. Reviewers can have
individual reviews or collaborate on a shared review. Review forms are
customizable from within the browser.

Document editing: Users can author and edit articles in the browser,
using Wax (https://waxjs.net/), Coko’s full-featured web-based word
processor.
Real-time notifications and chat: Kotahi is built to get the best from web

collaboration and supports real-time notifications, chat, synchronized
updates and more. Live chat (both text and video) functionality can be
used to communicate with authors or collaborate as an editorial team.

Metadata: The in-browser form builder can be used to design submission
forms to capture and manage metadata specific to each workflow.
Single-Source Publishing: Kotahi supports single-source publishing

(https://coko.foundation/articles/single-source-publishing.html). All

https://kotahi.community/
https://gitlab.coko.foundation/kotahi/kotahi
https://waxjs.net/
https://coko.foundation/articles/single-source-publishing.html

Kotahi: a new approach to JATS production 3 of 22

stakeholders are able to access the same manuscript during content
creation (peer review, editing, etc.) and production (copy editing,

semantic tagging, etc.). This obviates the need to track and control
documents across multiple systems.
Versioning: Versioning is supported so that changes to a submission can

be easily compared.
Exporting: Currently Kotahi exports to PDF, JATS, and HTML. A GraphQL
API makes it possible to export Kotahi’s data to other systems (such as

PubMed, Crossref and FLAX) as needed.
Integrations: Authorization integration via ORCID is available. Kotahi can
register DOIs for articles via integration with Crossref. It can also publish

reviews of existing articles as Hypothes.is annotations, as used by eLife for
generating Transparent Review in Preprints (TRiP) on the bioRxiv server.
Reports: Admin users of Kotahi get a dashboard that dynamically displays

the progress of articles through the system.

Users
Development of Kotahi is being supported by eLife, Amnet Systems, and
Aperture (an open publishing platform from the Organization for Human Brain

Mapping).

This article primarily focuses on the production of JATS

(https://jats.nlm.nih.gov/) in Kotahi. These capabilities have been anticipated for
many years by the Coko team and the build up to the current JATS functionality
has taken many years. However it is worth noting that recently Coko has collab‐

orated with Amnet, a publishing solutions company in India, on the Wax-JATS
development.

Background: Coko and Kotahi
The Coko Foundation was founded with seed funding from founder Adam

Hyde’s Shuttleworth Foundation fellowship. Coko produces a variety of open-
source software for publishing. Kotahi is one of many open source publishing-
related projects from Coko, and is built on top of several prior Coko projects.

Coko frameworks used by Kotahi
Kotahi builds on a number of different projects produced by Coko. Major com‐
ponents include:

https://jats.nlm.nih.gov/

Kotahi: a new approach to JATS production 4 of 22

PubSweet. PubSweet is Coko’s open source framework for building state-
of-the-art publishing platforms. Kotahi uses this as a component library

and parts of its framework. PubSweet is written in JavaScript.
xSweet
Wax allows marking up of documents in a way that can be easily

translated into valid JATS. Wax and Wax-JATS are written in JavaScript.
Paged.js to create high quality PDF output from any HTML content. Using
instance-specific templates, this allows Kotahi to export manuscripts and

metadata as print-ready PDFs. Paged.js is written in JavaScript.

In conjunction with Kotahi, integration work is also being done on another
Coko project:

FLAX (website forthcoming). FLAX is an open source publishing front end,
a web presence for content produced in Kotahi and Editoria

(https://editoria.community/). FLAX is in active development as a way to
present content which lives in Kotahi in a web-first model. FLAX is written
in JavaScript.

And two other projects at Coko, which may be integrated with Kotahi in the
near future:

Science Beam (https://sciencebeam.org/). An open source machine
learning application to convert PDF scholarly articles to XML with high
accuracy. Originally built by eLife and transferred to Coko to further

develop and maintain. ScienceBeam is primarily a Python application.
Libero Editor (website forthcoming). An open source JATS XML editor (a
replacement for Texture). Originally built by eLife and transferred to Coko

to further develop and maintain. Libero Editor is written in JavaScript.

While traditional workflows involve direct editing of documents inside of
Kotahi, it’s also possible to use Kotahi to run a PRC workflow, ingesting pre‐

prints from external servers. In that particular case, ScienceBeam might be
used to generate JATS from PDF-based manuscripts. In this use case Libero
Editor would then be used to edit the JATS produced by ScienceBeam. This

same pipeline could be used for other scenarios that need to convert PDF back
into structured data (eg. where LaTeX PDF output has been submitted).

Key concepts used by Kotahi

https://pubsweet.coko.foundation/
https://xsweet.org/
https://waxjs.net/
https://pagedjs.org/
https://editoria.community/
https://sciencebeam.org/

Kotahi: a new approach to JATS production 5 of 22

Workflow
The Kotahi workflow is very configurable and can support workflows that range
from very linear to very concurrent. Submission types are also configurable.
These two features together mean that Kotahi can support a wide variety of use

cases and workflow models. As an example, here’s a diagram of how Kotahi is
being used by the Aperture Neuro journal (Organization of Human Brain
Mapping):

The following is also a workflow diagram showing Kotahi being used by a PRC

organization (Publish, Review, Curate):

Kotahi: a new approach to JATS production 6 of 22

These diagrams don’t need to be explored in depth for an understanding of
how JATS fits into Kotahi (see https://coko.foundation/articles/white-paper-ko‐

tahi-current-state.html), though it’s useful for thinking about the ways docu‐
ments travel through a system from user to user. Many different people are
viewing a manuscript – in different states – and may be making changes; and

every publication probably has their own, slightly different, path. Aperture, for
example, is publishing to static HTML pages and PDF as a one-time event; but
you can also configure Kotahi to publish multiple times synchronously or asyn‐

chronously. Most of the time we imagine JATS as being the final point in a doc‐
ument; but Kotahi is designed in such a way that it doesn’t have to be.

HTML
Kotahi is using HTML as the source of truth. This has been core to Coko’s philos‐

ophy - bringing publishing to the web.

However, we’re also realistic about the ways in which authors are working:

they’re largely using Microsoft Word to prepare manuscripts – and editors by
and large seem to resist moving away from MS Word. In this case, we need to
bring the Word Documents into the web, that is, convert the docx files to HTML

at submission time.

MS Word poses particular challenges: Although the content of a docx file may

look nice, the underlying source is very complicated and messy. Consequently,
computationally determining the correlation of author intent to underlying
document markup is difficult. xSweet approaches the problem by

https://coko.foundation/articles/white-paper-kotahi-current-state.html

Kotahi: a new approach to JATS production 7 of 22

computationally interpreting the very messy XML source of docx files and con‐
verting to well-structured and clean HTML.

The following is an excerpt taken from article written by Adam Hyde and
Wendell Piez (the designers of Coko’s xSweet) on this approach:

“…attempts to ‘get out of Word’ have tried to jump from unstructured MS Word
to very structured XML formats by:

�. copying over all the data in the document and
�. interpolating structure at the same time in an attempt to ‘understand’

the ‘intent of the author’ (or a proxy) as represented by the display

semantics of the document.

But if the structure does not exist in the first place, you have a problem.

xSweet’s Word-to-HTML conversion retains step one (copying over all the data)
and replaces step two (interpolating structure) with a process that forsakes the
introduction of any structure in favor of carrying over whatever information

from the original MS Word file might be useful later on, whether for program‐
matically understanding or manually applying document structure. The best
solution of course, being a little bit of both. Hence we:

�. convert the unstructured MS Word document into an unstructured (or
partially better structured) HTML document; and

�. interpret the original MS Word file and carry forward as much
information as that original Word file contained for possible future use in
interpreting the document structure – or representing any features of

interest – while not actually structuring the document.

Interestingly, since HTML does not require you to enforce a strict document

structure if you do not have it, an unstructured document flows into HTML as
easily as a structured, or partially structured, document flows into it. If your aim
is a well-controlled document format, such a failure to enforce strict structures

is regarded as a flaw or weakness. Yet, since we do not have much or any docu‐
ment structure in the originating Word document, and our goal is to improve it
– HTML’s flexibility becomes a critical feature.”

This process produces an intermediary carrier format – an information-rich, san‐
itized HTML format that is suitable for improvement.
A final step of the xSweet libraries further interprets the information carried

over from the conversion which implies structural elements, applies that struc‐
ture, and then converts the total output to a (configurable) target HTML profile.
In an HTML editor, we can then bring to bear further tools (Wax, for example)

for adding structure, reviewing, commenting, and revising.

Kotahi: a new approach to JATS production 8 of 22

Single-Source Publishing
Kotahi's design is also informed by the idea of Single-Source Publishing. There’s
a lot that could be said about this; where it’s relevant to Kotahi and JATS is that
the Kotahi model sees JATS production as an integral part of the publishing

workflow, not something that should be considered as a separate step.

Publishing has long suffered from broken workflows that slow down the time

to publish and unnecessarily inflate the cost to publish. In general, this comes
from a historical disconnect between content creation processes and produc‐
tion processes.

In many publishing environments, authors, copy editors, proofreaders and oth‐
ers create and improve content primarily in one tool (usually Microsoft Word).

The content creation process feeds into the production process where produc‐
tion staff create a multitude of other formats – HTML, PDF (for print and
screen), as well as XML and ebook formats.

To convert to these file formats, the content has to either be programmatically
converted to various target formats via software (such as Pandoc or bespoke

software), or manually converted by people using software (such as InDesign).
Publishers achieve this by either slinging the content over the wall to a publish‐
ing services vendor or contractor, or they employ internal staff. The people do‐

ing these conversions belong to the general category of production people –
usually programmers, designers, or format wranglers.

Most publishing workflows separate the content creation from the content pro‐
duction. This disconnect separates who does the work, the tools used, and,
most importantly, the files worked on. The people, the tools, and the working

files all change as the content jumps from content creation to content
production.

Kotahi: a new approach to JATS production 9 of 22

Consider a simple journal example: imagine that the production staff have dis‐
covered from proofs that figures are in the wrong place. This information must

be communicated to (for example) the publishing services provider (via email,
MS Word, annotated PDF, etc.). The vendor interprets the information, makes
the changes in their (various) tools, and sends it back to the publisher to check.

This may be iterated repeatedly.

Larger publishers have staff to manage the communication of changes, track

the changes, check the changes etc. This costs time and money. If publishers
don’t do this well, the consequence is that more errors are introduced.

This is the problem single sourcing is meant to solve. Single sourcing is a gen‐
eral approach to publishing workflows that is intended to avoid disconnecting
the content creation and production processes – saving time and money, and
reducing errors.

Single sourcing isn’t a specific solution, it is a general idea that must be inten‐
tionally designed into a publisher’s workflow. Single sourcing changes how

people work and often requires a different tooling. The secret really, if we zoom
out to a high-level abstraction of the problem, is to work out how the content
creation and production people can work in a shared environment where they

all work on the same files, the same source files – hence the term ‘single
source.’

Kotahi: a new approach to JATS production 10 of 22

In a single-source environment, if a change needs to be made while the con‐
tent is in production, the content people can make the change themselves.

Less time and communication required, less to-and-fro, less management over‐
head, and fewer errors.

What this also allows, is moving from a more linear model of publishing – a
manuscript goes from step A to step B to step C, each done by a separate per‐
son – to a model that allows more concurrency and collaboration, leading to

more efficient document production. Efficient document production is one of
the many things Kotahi sets out to achieve.

Documents in Kotahi
A Kotahi document is both a document and a collection of data - a network of
content.

Kotahi’s representation of a document can be split into two main interlocking
parts:

�. a submission form which contains metadata; and
�. a manuscript editor (Wax) which contains the body of the text.

As different users edit the content or the metadata, each session is added to
the document history. The most recent edit becomes the common version for

all users (as per Single Source Publishing). In this way users are always working
with the most recent content (single-source).

Submission forms for documents can be customized per instance in Kotahi
with a drag-and-drop form builder; the forms contain the particular set of
metadata that the journal uses.

Kotahi: a new approach to JATS production 11 of 22

The submission form is completely customizable by the publishers and can be
used to capture any metadata they wish. It can include, for example, the title of

a document, relevant dates, author names and affiliations, and a document ab‐
stract. The form metadata could also include keywords (either freeform or from
a predefined list) and file attachments. Kotahi’s conception of the form is ex‐

tremely abstract by design to support as wide a spectrum of use cases as
possible.

The manuscript has some flexibility as well. Kotahi uses Coko’s xSweet to im‐
port docx documents. For anything that’s not a docx, the manuscript is treated
(at this stage) as an attachment; an URL for a document that exists elsewhere

on the web can also be used.

The most common workflow, however, is to import docx files into Kotahi. These

go through xSweet and are returned as HTML (as discussed above) and dis‐
played in Wax. Understanding this chain of events is critical to understanding
how Kotahi enables users with no prior knowledge of XML to produce valid

JATS, as will become evident later.

xSweet not only converts the docx file to clean HTML but also pulls metadata

from the file which is inserted into the form – the primary header, for example,
becomes the title of the document, though that can be overridden by the form.

When a manuscript has been imported, it can be edited by users (dependent
on roles and document state). Editing happens in the Wax editor, which is a
full-featured editor. Features of Wax include:

Threaded Comments and Annotations
Different views for different users: an author or a reviewer might see a

read-only version of a Wax document which appears as the final version.
Authors might be able to reply to comments but not add their own.

Kotahi: a new approach to JATS production 12 of 22

Support for editing equations using MathJax: entering a $ or $$ enters
math mode, where LaTeX can be entered. When math mode is exited (by

typing another $ or $$), the LaTeX is converted to an SVG for display
purposes; clicking it allows editing.
Predefined (configurable) styles

Interactive widgets (e.g. question models)
Uploading of figures and media
Full-featured footnotes

Table entry and editing
Highlighting
Internal track changes: Additions and deletions can be tracked by user.

The following image shows the user interface for Wax.

As mentioned earlier, Wax’s internal format is HTML. Consequently, Kotahi can
directly export PDFs using HTML with PagedMedia queries (utilizing Paged.js).

Styling for Paged.js is done with stored CSS templates. Paged.js is itself a com‐
prehensive topic and deserves a separate article.

For more information on PagedMedia and how Paged.js works please see
https://pagedjs.org/

https://pagedjs.org/

Kotahi: a new approach to JATS production 13 of 22

It’s important to note that Wax (as used in Kotahi) is not an ‘anything goes’
HTML editor: Wax allows only a strict predefined (and configurable) set of docu‐

ment semantics. Each semantic element (eg italics, or headings) are recorded
in the underlying source as tags (eg. `` or <h1>``</h1>) which align
(by configuration) with the same tags produced by xSweet. While a submitted

docx file might consist of a great variety of (almost) arbitrary tags, the result of
xSweet’s docx-to-HTML conversion has a clearly defined, clean, tag range and
structure. The output from xSweet is also conformant with the structure and

tags required by Wax. Editing in Wax also ensures the underlying integrity of
the underlying document source is maintained.

Making JATS-ready documents
When the staff/team are satisfied with the shape of the content, they can then

prepare the material for publication using the Kotahi production interface
which contains the Wax-JATS editor. The Wax-JATS editor is similar to the regu‐
lar Wax editor (it is a ‘version of Wax’), but it also includes functionality specific

for preparing the document to export as JATS. From this production page, the
user can also download versions of the document as PDF, HTML, or JATS.

JATS in production (the Wax-JATS editor)
The Wax-JATS editor includes features related to creating JATS. The user re‐

quires no prior knowledge of JATS or XML to prepare the document for JATS ex‐
port. The Wax-JATS interface simply requires the user to highlight parts of the
document and choose what type of content that selection contains. This is very

much a drag-and-drop and point-and-click exercise. No messy editing of XML
required. Citations, for example, can be identified by selecting text and clicking
on ‘citation’.

The design principle envisioned by Adam Hyde, behind the Wax-JATS editor, is
not to expose the JATS document model (which is a complex set of XML tags)

but to give the user simple MS Word-like tools they can use to create JATS with‐
out having any knowledge of the JATS syntax. The conversion to JATS is as auto‐
mated and as simple as possible. The user doesn’t need any knowledge of what
the internal format is; they only see content and visual style and use simple se‐

lection tools to identify parts of the content.

The Wax-JATS editor then marks the underlying format (HTML) in such a way

that Kotahi can map these tags to JATS at export time.

For example, internally a Kotahi document might have a typical flat HTML

structure such as:

Kotahi: a new approach to JATS production 14 of 22

On conversion, that familiar HTML structure is carefully wrapped in JATS-style
sections from the smallest header up, becoming:

This is a more logical structure; but the user is not forced to convert the docu‐
ment into the nested format - that is all automated. The user simply imposes

structure visually; the converter attempts to make sense of it, and exports to
JATS at the push of a button.

A similar approach is currently taken with citations. The Kotahi approach is cur‐
rently to wrap the selected citations in a Reference List element; every para‐
graph or list item that’s inside a Reference List in Wax becomes a <mixed-

citation> on export to JATS.

The following screenshots show this process in action. The first screenshot (be‐

low) displays the Wax-JATS editor with some areas of an article selected.

Kotahi: a new approach to JATS production 15 of 22

The following image shows what the underlying HTML source in the Wax-JATS
editor looks like for the above example.

Finally, at a click of a button the above HTML is mapped onto a JATS structure.

The below image shows the above HTML converted to JATS by Wax-JATS at ex‐
port time.

Kotahi: a new approach to JATS production 16 of 22

Even if the user has put a Reference List or an Appendix element in an odd
place (e.g. in the middle of a document) this approach means that on conver‐
sion to JATS, Kotahi pulls the reference list or appendix out of the body text and

moves them to the back matter (conformant with JATS specifications) of the re‐
sulting JATS file. This helps prevent the user from making invalid JATS.

JATS structures front matter very carefully in a <front> tag. Kotahi can generate
this very easily from the internal submission form data, which, for example, will
split a list of authors into neatly structured first and last names and affiliations.

The following image is of a basic example Kotahi submission form created by
the form builder.

Kotahi: a new approach to JATS production 17 of 22

The form above displays a few simple fields, all of which are mapped to JATS
front matter at export time. The following image shows the data from the

above form as it has been exported on-demand to a valid JATS file.

Who can produce JATS?
One part of the Kotahi philosophy that should be again noted: we assume that

the production team is not necessarily expert in JATS, though the team might
have some domain knowledge. Kotahi is aimed at making JATS at scale; a

Kotahi: a new approach to JATS production 18 of 22

journal might publish thousands of articles per year. While it will take a little
time for the production editor to learn how content needs to be formatted in

JATS-flavored Wax, the learning curve should not be steep and once the
process is familiar the production process is very fast.

Exporting JATS
JATS export is currently done on-demand from the Wax-JATS editor. When

JATS export is chosen, the server processes the document’s manuscript and
submission form data and sends back an XML (JATS) file.

Internally, the ‘JATS-flavored’ HTML from the Wax-JATS editor is processed tag
by tag and turned into JATS markup as covered above.

Initial setup: metadata
The front matter of a typical JATS file composed from an article contains two

major types of metadata:

�. metadata specific to the article and

�. metadata for the journal (the journal’s title, ISSN, etc.).

Journal metadata (with a few exceptions) tends to be similar across all articles

in a journal; this is set up as part of the process of getting an instance of Kotahi
off the ground. (Initial setup similarly involves setting the stylistic defaults and
layouts for articles as they are seen in the editor and exported as HTML and

PDFs.)

The shape of the submission metadata will vary greatly from workflow to work‐

flow. Kotahi’s interactive submission form builder allows setting up the sorts of
metadata that will be attached to each submission. However, there’s not a one-
to-one correspondence between what’s in the form and what’s exported as

metadata. A form may include workflow-specific metadata – who, for example,
anonymous reviewers are, something that some users of Kotahi but not others
should know – that isn’t part of the metadata that’s involved in JATS. This is
controlled by a mapping of form fields to JATS metadata types during the

setup of a new instance of Kotahi (this might change over time towards a
friendly admin interface to map metadata to JATS output).

Validation
When JATS is created, it goes through an XML validator and is validated against
the JATS schema. Because the elements allowed in Wax-JATS has been

Kotahi: a new approach to JATS production 19 of 22

carefully enumerated and constrained – all of the paragraph styles, list styles,
and character styles that can appear in the document have been defined by

configuration - those elements can be thoroughly tested programmatically.
Consequently, validation errors are not something that users should see; in‐
stead, they tend to indicate that something is wrong on the development end.

JATS as part of the document lifecycle
JATS export (as well as PDF and HTML export) is currently on-demand from
Kotahi. Conversion to JATS is not necessarily an end of line process; although it
would most likely happen near the end of a document’s workflow, a user could

generate a JATS file, inspect it, make changes to the manuscript, and regener‐
ate at any time. JATS, PDF, and HTML can all be exported at any time in the
document lifecycle.

Crucially, a manuscript that’s had JATS elements highlighted can be sent back
to the ‘normal’ Wax editor; so if a last-minute mistake is discovered that needs

to be corrected by an author, the author can work in the same editor that re‐
view was done in, rather than using a separate (and possibly confusing) produc‐
tion tool.

The Future
Kotahi is under heavy development through a consortium of organizations
(Coko, eLife, Amnet, Aperture). Kotahi is also being used with real content by
real publishers who are providing valuable feedback about the functionality

(and provisions for workflows). While Kotahi is open source, it can be custom‐
ized to be used in for-profit systems: Amnet Systems, for example, is already us‐
ing a private instance of Kotahi (Reach OA) with customized functionality to fit

into their workflow.

JATS is something that’s been added to Kotahi as part of this ongoing process.

At this time Kotahi is using a small fraction of the range of functionality that
JATS allows; as users call for more, we envision adding more. A handful of
examples:

There’s a current bifurcation of documents into a form (the metadata)
and the manuscript (the body of the text). Metadata is imported into the
body content of the final paper at export time. We would like metadata

instead to be linked to the document and be editable in both places.
Smart components that are part of Wax/Wax-JATS would allow author
names, for example, to appear as they should in a PDF or as HTML but to

Kotahi: a new approach to JATS production 20 of 22

be correctly parsed when exported to JATS. Editing in the Wax-JATS
widget would then also update the form metadata and vice versa.

Kotahi’s treatment of citations is very simple – it’s possible to imagine
adding a citation manager to Kotahi’s interface that would treat citations
as structured data if authors can provide them this way. Though there are

other ways of achieving this goal: we’re also looking at using packages
such as ScienceBeam (now a Coko product) to process submissions and
automatically extract metadata such as citations to structured data for

importing into the form and document.
Math in Kotahi is currently handled by MathJax, which displays equations
as SVGs and exports them as MathML. Other ways of handling math can

be imagined and could be added. Interestingly MathJax also supports
chemical symbols, which might lead to Wax support of chemistry
equation creation using (for example) the mhchem syntax.

Export process improvements can be imagined. As mentioned above, for
example, Kotahi’s JATS export is currently on demand; we imagine this
will move to a more persistent basis, with current JATS for published

documents available via API. Kotahi could also be configured to deliver
JATS to predefined third-party services in demand (Kotahi currently does
this for delivery of HTML and PDF to the Coko FLAX product and adding

JATS to this process will occur in the near future).
As previously mentioned, the Wax-JATS editor allows users a wide
amount of flexibility when identifying JATS structural elements. There’s

nothing stopping a user, for example, from putting in 12 abstract sections,
even though a JATS document can only have a single <abstract> tag.
Currently if you have a manuscript in the production editor with 12

abstract sections, the first will be pulled out of the body and moved to the
front matter of the created JATS and put inside an <abstract> tag. The
others will be deleted, as abstracts can’t appear in the body (according to

the JATS specification). The result is perfectly valid JATS, though this
result might be confusing to a novice user. The plan going forward is to
offer structural hints to the user: So if, for example, a second abstract

element is inserted into the text, it might get a red border, and a warning
might explain that a document can only have a single abstract in JATS.
There is also the possibility to programmatically constrain the number of
abstracts identified (etc). However, while Wax does provide the

functionality to constrain (for example) the addition of multiple abstracts,
this kind of logic is complex. The preference is to take a less burdensome
development path in the near term and support the user with

information they can use to better structure the document.
While Kotahi currently uses an on-demand model for creating JATS –
where the XML is created and then destroyed after download – it’s

possible that we’ll move to a model where JATS is created automatically

Kotahi: a new approach to JATS production 21 of 22

every time a change is made in the production editor; this would happen
server-side, and if the editor chose to download JATS, the file would

already be ready.
Until very recently, Kotahi handled uploaded / in a document as base-64
strings. This is in the midst of changing, and this won’t be the case within

weeks of this article being published. If images are handled as base-64
strings, however, JATS can be exported as a single XML file, which is the
current situation. A full-function image store is currently being built;

when this is in place, what’s output as JATS will not be a single XML file
but rather a ZIP file containing the XML and the images in multiple
formats – if authors have TIFFs as their original format, for example, the

JATS will include both the TIFFs and lower-resolution WEBPs created to
display the image online or in PDFs.

Conclusion
JATS is one piece of Kotahi; it’s recognized as being part of the process of schol‐

arly publishing and Kotahi integrates it as such. There are certainly other ways
of producing JATS than the ‘Kotahi way’. The virtue of Kotahi's approach to JATS
production – and perhaps why it is valuable to the wider landscape of JATS – is
that it makes the threshold to generate JATS very low, and might bring JATS to

a wider base of users, and the process is fast, scalable and cost effective.

Kotahi is a modern scholarly publishing platform. It is built with modern tech‐

nologies with modern, efficient workflows in mind. The platform is also very
modular, extensible, and configurable. There is almost no element of the sys‐
tem that is immutable – all elements can be changed if required. In addition,

Kotahi leverages modern real-time communication protocols and, together
with the Single Source Publishing design, the entire system offers publishers
enormous futureproofing and workflow optimization opportunities.

All aspects of Kotahi are open source and liberally licensed (MIT). The Coko
Foundation exists to support organizations wanting to hire us to extend Kotahi

or go it alone. We also welcome anyone wanting to join the Kotahi
consortium/community. In all development scenarios, Coko facilitates the mul‐
tiple organizations extending Kotahi to ensure the community is building upon

each other’s work – this helps ensure lowering the burden of development cost
and time as well as eliminating possible duplication of efforts.

Additional Useful links
Coko Foundation’s website: https://coko.foundation

https://coko.foundation/

Kotahi: a new approach to JATS production 22 of 22

The Kotahi site: https://kotahi.community
Kotahi’s Gitlab repository: https://gitlab.coko.foundation/kotahi/kotahi

Typical Kotahi workflow explanation:
https://coko.foundation/articles/white-paper-kotahi-current-state.html
Wendell Piez and Adam Hyde’s argument about using HTML as a source

of truth: https://coko.foundation/articles/a-typescript-for-the-web.html
Wendell Piez, “Uphill to XML with XSLT, XProc … and HTML,” explaining
the thinking behind xSweet:

https://www.balisage.net/Proceedings/vol20/html/Piez02/BalisageVol20-
Piez02.html
Wendell Piez, “HTML First?: Testing an alternative approach to producing

JATS from arbitrary (unconstrained or "wild") .docx (WordML) format,” on
early attempts to make JATS from HTML with xSweet:
https://www.ncbi.nlm.nih.gov/books/NBK425546/

Adam Hyde, “One Enormous Step at a Time – Now JATS,” explaining the
different systems behind Kotahi: https://www.adamhyde.net/one-
enormous-step-at-a-time-now-jats/

Adam’s Hyde article about single-source publishing:
https://coko.foundation/articles/single-source-publishing.html

Credits
Dan Visel wrote most of this article with edits by Adam Hyde and input
from Ben Whitmore. Large parts of the article are quoted from prior
articles written by Wendel Piez and Adam Hyde. The section on Single-

Source Publishing is a direct copy from an earlier article on the topic by
Adam Hyde.
Diagrams by Henrik van Leeuwen. Initial Aperture and PRC Workflow

diagrams by Ryan Dix-Peek (Kotahi Project Manager).
Christos Kokosias is the lead wax developer for Coko. Wax itself is built on
the wonderful open source ProseMirror framework.

Dan Visel has done most of the work on the Wax-JATS editor (sponsored
by Amnet).
Ben Whitmore is the Coko lead dev for Kotahi. Prior to Ben the lead

Kotahi developers for Coko were Giannis Kopanas and Jure Triglav.
Adam Hyde and Wendell Piez are the designers of the xSweet approach.
Wendell Piez did most of the XSLT development for xSweet.

Adam Hyde designed the Wax-JATSapproach.
Copy editing by Raewyn Whyte.
This article is CC-BY-SA 2022 Dan Visel, Adam Hyde, Ben Whitmore.

Please distribute!

https://kotahi.community/
https://gitlab.coko.foundation/kotahi/kotahi
https://coko.foundation/articles/white-paper-kotahi-current-state.html
https://coko.foundation/articles/a-typescript-for-the-web.html
https://www.balisage.net/Proceedings/vol20/html/Piez02/BalisageVol20-Piez02.htm
https://www.ncbi.nlm.nih.gov/books/NBK425546/
https://www.adamhyde.net/one-enormous-step-at-a-time-now-jats/
https://coko.foundation/articles/single-source-publishing.html
https://prosemirror.net/

