Coko

[llustrations: Henrik van Leeuwen
PDF Design: Harshna Haswani

Rendered from HTML using Paged.js

How the "itch-to-scratch
model' can solve our UX
woes

Every good work of software
starts by scratching a developer's
personal itch. Originally
published on Opensource.com


https://pagedjs.org/

Open source is a developer-centric solutions model, which, in a nutshell, could
be described as building communities of developers to solve problems.

In its most simplistic form, the model has two stages. First, a developer has a
problem, which they can fix with some new code, and they make a start on it.
Second, if they then make their solution available to other developers it can de-
velop into a full blown thriving open source community. When it works it is a
fantastic process to behold and it this simple model that has changed the his-

tory of computing.

But outside of developers solving developer problems, open source hasn't done
so well. This is pretty well discussed in open source circles, often framed in
questions like: "Why are the user interfaces so sucky?" Framing the issue in
terms of bad Ul is common but it is perhaps a shallow treatment of the issue.
'User facing' open source projects don't just fail at Ul, they fail to meet user
needs at a much deeper level.

When looking around at the available open source solutions that are primarily
aimed at users, have you ever asked yourself why open source seems to per-
form so poorly?It's not just the UX of your favorite desktop app that feels clunky,

but why isn't open source winning in the desktop space in general?

Where is that open source desktop app everyone wants? What about web

space for that matter?

Where are the open source equivalents that Kill the proprietary opposition?
Why isn't open source wiping out the competition in every user sector from
text editors to CRM, from webmail to social media?

There are few examples.

| would argue Unity desktop outstrips the competition, and that Mattermost
and GitLab are better than Slack and GitHub, but I'm not in the majority on
that.

Outside of a small handful of examples, | can't see any open source products
killing the proprietary competition when it comes to fulfilling user needs. Why
has open source done so well in producing developer-facing solutions and web
and internet infrastructure, but has done so poorly in the user-facing world?

| think open source can be dominant in social networks, text editors, CRMs,
webmail, and more. In fact, | think the open source model has some essential
characteristics that lend itself to beating the proprietary competition right
across the board. But not without first understanding why it is currently not do-
ing this.

20of5



To understand the problem, as a first step towards solving it, we must look
deep inside the way we create solutions in open source communities. We need

to do this critically and be prepared to ask ourselves some difficult questions.

The itch-to-scratch model "Every good work of software starts by scratching a
developer's personal itch." -- Eric Raymond Eric Raymond suggested that open
source and free software has a particular kind of solutions model he called the
itch-to-scratch model. Basically, the idea is that open source projects start be-
cause someone, somewhere, sees a problem (the itch) and they start program-
ming their way to a solution (the scratch).

That makes perfect sense and it is a very succinct way to describe what actually
happens. Eric Raymond wrote more about it in The Cathedral and the Bazaar,
which is considered a foundational work when it comes to understanding open
source. As Eric Raymond states:

"Every good work of software starts by scratching a developer's
personal itch." -- Eric Raymond

The itch-to-scratch model has two very important characteristics which have
played extremely well for open source:

1. The fact that it is your itch is essential for developing a good solution. If
you have a problem and you know it very well then you are very well
paced to start solving that problem. You are much better placed as an 'in-
sider' to solve the problem than an 'outsider' that has a shallow grasp of
the issue. Because it is your itch you are both motivated to solve it and,
more importantly, you will have unique insights into how to solve that
problem.

2. Others with a similar problem are essential for building community. If
your itch is a common itch, and you know others that need your partial or
complete solution, then you are likely to see a growth in contributions
and/or adoption. That's basically the secret sauce to the growth of open
source projects. There is more to successful open source communities of
course, like governance, volunteer management, understanding intrinsic
and extrinsic motivations, and so on, but the heart of the matter is that if
you know others with the same itch, open source is, if nothing else, an ex-
cellent model for magnifying the scratch effect. It is also not without
precedent, as anyone that reads the works of John Abele or Everett

Rogers knows. In the outside world, this process is known as 'diffusion’.

So, the itch-to-scratch model, as a model for open source communities, really
succeeds because you know your itch, and, secondly, you know others that
share the same problem and, consequently, want to share, or participate in cre-
ating your solution. So far it sounds thoroughly unhygienic!

3of5


http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

In real life

In the real world, we see this in action. Perhaps the cultural genesis of this is
Linux. Linus Torvalds has a problem, he wants a free operating system (the itch).
He makes a go of it (the scratch) and posts an email to the world asking if any-
one else is interested in solving this problem with him. And, we know the rest of
the story: one big community-driven scratch that has changed the history of
computing forever. This is the itch-to-scratch model in action in a prototypical
manner.

That is pretty much how every successful open source project from day one has
evolved. Developers solving technical problems and gradually attracting other
developers to work with them to solve or adopt it. At the heart of this model are
the developers. The people with both the problem and the solution. | call this
model the developer-centric solutions model. It is, pretty much, the model for

every open source project that exists.

So, we know that this model is powerful. We have seen what it can do. But how
many times have we stopped to ask ourselves what it can't do or what it
doesn't do well? How often have we asked ourselves where it is failing and
why? | don't think we have this conversation enough.

Let's start to consider these questions by first being clear about where the de-
veloper-centric model works. Well, it works well when solving problems devel-
opers have, which are almost by definition exclusively or at least primarily, tech-
nical problems. This is why the internet is basically run on top of an open source
layer from BIND to OpenSSH, and why you can't get far in the web hosting or
container world without open source. In fact, you can't really develop software
of any kind without using open source libraries of one sort or another. The de-
veloper-centric model wins, hands down when solving these kinds of problems.

However, while the developer-centric model has proven to be amazingly good
at solving technical problems, history has demonstrated that it hasn't proven to
be very good at solving user-facing problems. If it were good at doing this we
would expect to see open source crushing proprietary applications in the user
space. But we don't see this very often.

Could it be that this model is not good at solving these kinds of problems?

Here is where | believe the problem lies. The developer-centric model works for
solving technical problems because, as Eric Raymond pointed out, the people
with the problem are at the heart of creating the solution. The developers know
their itch.

When developers are solving technical problems, problems that they have, un-
derstand well and want to fix, it works extremely well. And when developers are

4 of 5



solving user problems, problems that are not their own, where they do not un-
derstand the issue intimately and the required solution is not primarily a tech-

nical issue, it does not work very well at all.

This is because in these cases we have broken the first requirement of the itch-
to-scratch model: know your problem. The developers do not 'know' the prob-
lem intimately the way the users do because it is after all, not their problem.
They are trying to solve the famous SEP, Someone Else's Problem.
Consequently, they do not have the same in-depth experiential knowledge and
understanding of the quirks and nuances of the problem that the users do. It is
a qualitative, experiential, difference but it is an important one.

Consequently, we get software solutions that reflect the developers under-
standing of the problem and reflects a developer's approach to the solution;
one that typically does not match the users understanding of the problem or
their needs.

In open source today, developers are the dominant solutions providers. When
they build solutions for themselves it is an almost perfect model. But when it
comes to building solutions for a user base whose needs the developer doesn't

intimately understand (because they are not the user), then the model fails.

How do we solve this?

| think the answer is clear. We stick to the itch-to-scratch model.

It is a good method for solving problems. It is the model that has enabled open
source to squash the proprietary competition in the technical world. We should
stick to it, but we need to be consistent in how we apply it. We need to keep the
people with the problem, those with the itch, the people that understand the
problem intimately, at the heart of the problem-solving effort.

It is not enough to add 'UX people' or 'user forums' to an otherwise developer-
centric project culture to solve user needs. That approach is an interim patch
and is only going to go so far. We need to go back to core principles of the itch-
to-scratch model and bring the people with the problem (the users) into the
heart of the solutions model.

To do that we need to begin asking ourselves what a user-centric solutions
model might look like for open source.

What does it look like to you?

50f5



